
Chapter 1
Performance Analysis Tool for HPC and Big
Data Applications on Scientific Clusters

Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

Abstract Big data is prevalent in HPC computing. Many HPC projects rely on
complex workflows to analyze terabytes or petabytes of data. These workflows
often require running over thousands of CPU cores and performing simultaneous
data accesses, data movements, and computation. It is challenging to analyze the
performance involving terabytes or petabytes of workflow data or measurement
data of the executions, from complex workflows over a large number of nodes
and multiple parallel task executions. To help identify performance bottlenecks or
debug the performance issues in large-scale scientific applications and scientific
clusters, we have developed a performance analysis framework, using state-of-
the-art open-source big data processing tools. Our tool can ingest system logs
and application performance measurements to extract key performance features,
and apply the most sophisticated statistical tools and data mining methods on the
performance data. It utilizes an efficient data processing engine to allow users to
interactively analyze a large amount of different types of logs and measurements.
To illustrate the functionality of the big data analysis framework, we conduct
case studies on the workflows from an astronomy project known as the Palomar
Transient Factory (PTF) and the job logs from the genome analysis scientific cluster.
Our study processed many terabytes of system logs and application performance
measurements collected on the HPC systems at NERSC. The implementation of
our tool is generic enough to be used for analyzing the performance of other HPC
systems and Big Data workows.

1.1 Introduction

Large science projects have been relying on thousands of CPUs to compute terabytes
or petabytes of data [18][32]. This chapter studies the challenges of analysis on

1Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 2University of California at
Berkeley, Berkeley, CA, USA, and 3California Institute of Technology, Pasadena, CA, USA

1



2 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

large amount of monitored performance measurement data from the cluster system,
and tackles the challenges by providing a performance analysis tool. Many HPC
applications are built to generate and analyze terabytes or petabytes of data, and
they often require running over thousands of CPU cores and large amount of data
accesses, data movements, and computations. HPC applications running on HPC
platforms include parallel applications or high throughput computing applications,
and these applications could involve Big Data workflows. The job executions from
the complex workflows generate a large volume of measurement data over time.
Due to the complexities of the job executions on the large number of machines
and large amount of data, it is challenging to identify bottlenecks or to debug
the performance issues in HPC applications and scientific clusters. Understanding
the performance characteristics of the complex scientific workflows managing
thousands of concurrent operations and debugging their performance issues are
challenging for various reasons. The concurrent data accesses may compete for
shared data storage and networking resources with each other on the system. The
performance characteristics on the current generation of the storage hardware and
memory hierarchies are sometimes unexpected due to the complexities. Unexpected
delays can be introduced by the temperature-based throttling mechanisms on the
modern CPUs, which reduce the clock rate to decrease heat production. It is
common for large parallel jobs to experience mysterious performance fluctuations.
To address these challenges and to help understand these performance fluctuations
and diagnose performance bottlenecks, we have developed PATHA (Performance
Analysis Tool for HPC Applications) [40] for HPC applications and scientific
clusters using a state-of-art big data processing tools .

Our tool can ingest system logs and application performance measurements
to extract key performance measures, and apply the most sophisticated statistical
tools and data mining methods on the performance data. It utilizes an efficient data
processing engine to allow users to interactively analyze large amounts of different
types of logs and measurements. Using PATHA, an interactive exploration of the
performance measurement data is enabled for the user’s understanding about the
performance of their own applications. A big data processing framework, Apache
SparkTM [43] is employed in the backend to distribute and parallelize computational
workloads for analyzing large amounts of performance data. SparkTM can utilize in-
memory processing to reduce an overhead of loading data from disk. Compared
with other big processing frameworks such as Hadoop, SparkTM fits better for
PATHA to conduct performance analysis combined with in-memory computations
by reducing loads and stores of intermediate results on disk. PATHA can identify
performance bottlenecks through outlier detection and other data mining techniques
through the extensive analysis capability of SparkTM. PATHA further provides
interactive visualization of these bottlenecks and their dependencies, and allows
quick integration of the new performance information as it gathers from the newly
generated log files.

For case studies, we have worked with the Palomar Transient Factory (PTF)
[23][29] application and job logs collected from Genepool cluster [1] for genome
analysis. We have used PATHA to analyze application performance of the PTF



Title Suppressed Due to Excessive Length 3

application with the measurements collected on the NERSC Edison cluster. We have
also analyzed system performance to identify job performance outliers from the logs
of Genepool cluster. We believe that PATHA is applicable to other analysis cases
for conducting performance analysis and bottleneck detection, and these example
case studies are representative use cases. It is generally applicable to the combined
multiple data sources such as application logs and cluster logs from schedulers, sub
systems of clusters, or monitoring tools.

The PTF application is a wide-field automated survey that records images of
variable and transient objects in the sky [23][29]. Images from these cameras are
sent and stored to the NERSC Edison cluster for processing through the near
real-time image subtraction data analysis pipeline. In each processing step, the
timestamps of the execution were recorded in the database. As the PTF analysis
processing pipeline has been optimized, its performance analysis to find hidden
performance bottlenecks is particularly challenging. In addition, queries on the
database need to be minimized for severe overhead on the production database
shared by many users. Through our study with PATHA, we were able to identify
and to optimize hidden performance bottlenecks and inefficient operational steps,
without incurring large database overhead.

The Genepool scientific cluster produces large job logs from a large number of
nodes and multiple parallel task executions, and it is challenging to analyze and
extract meaningful information from the job logs due to the complexities. Many
performance-related fields in the logs are correlated to each other, and jobs interact
in the task executions. Using PATHA, we were able to analyze system performance
in an efficient and user-friendly way, to extract interesting information about system
performance, and to identify performance outliers. We believe that PATHA can
analyze the performance of other scientific workflows as well as cluster systems
using the application logs and cluster systerm logs.

The contributions are:

• the design of bottleneck detection methods in PATHA, e.g., execution time
analysis and data dependency performance analysis

• the development of PATHA to handle different types of measurements from
scientific applications and HPC cluster systems

• the evaluation of PATHA using a big data application such as PTF and large-size
job logs of a scientific cluster

The rest of the chapter is organized as follows. Sec. 1.2 presents related work.
Sec. 1.3 demonstrates the design and implementation of PATHA. Sec. 1.4 and
Sec. 1.5 present case studies for experimental evaluations. The conclusion and future
work are in Sec. 1.6.



4 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

1.2 Related Work

Several performance modeling works were proposed as follows. For scientific
workflows, the following works were proposed; for example, on a CPU node [37],
in the Grid environment [11][16], and in the cloud environment [26][25]. However,
the large scientific workflows are frequently running on a large computer with
sophisticated storage and networking resources that are not easily captured by the
existing models. Williams et al. [37] proposed the Roofline model about a theoretical
model for analyzing upper bounds of performance with given computational bottle-
necks and memory bottlenecks. Tikir et al. [35] proposed to use genetic algorithms
to predict achievable bandwidth from cache hit rates for memory-bound HPC
applications. Duan et al. [16] proposed to use a hybrid Bayesian-neural network
to predict the execution time of scientific workflow in the Grid environment.
In addition, performance models have been proposed in other domains. Cohen
et al. [14] proposed to learn an ensemble of models using a tree-augmented
Bayesian network on a system trace, and cluster the signatures to identify different
regions of normality as well as recurrent performance problems. Ironmodel [33]
employed a decision tree to build the performance model based on the queuing
theory of expected behavior from end-to-end traces. Ganesha [28] adopted a
clustering mechanism to learn the initial parameters to model Hadoop performance
behavior as a mixture of k Gaussians. These performance models are based on the
simplified models or assumptions about the executions on the underlying hardwares
and cluster. Our performance analysis is based on the empirical model without
sacrificing the complex interactions in the executions.

Researchers have proposed mechanisms to identify performance problems in
the cluster environment. Barham et al. [5] proposed to use clustering to identify
anomalous requests. Xu et al. [38] proposed to find erroneous execution paths using
the PCA [19] on console logs. Bod et al. [6] used logistic regression with L1
regularization on the vector of metric quantiles to fingerprint performance crisis.
They used online sampling to estimate quantiles from hundreds of machines. Vento
et al. proposed to use floating point operations per seconds (flops) as an indicator of
poor performance jobs [36]. Yoo et al. [41] adapted machine learning mechanisms
to identify performance bottlenecks using fingerprints generated from micro-
benchmarks. Yadwadkar et al. [39] proposed to use the the Support Vector Machine
(SVM) [15] to proactively predict stragglers from cluster resource utilization
counters. Browne et al. [8] proposed a comprehensive resource management tool by
combining data from event logs, schedulers, and performance counters. In addition,
Chuah et al. [13] proposed to link resource usage anomalies with system failures.
These works can help our work differentiate performance bottlenecks at cluster level
and those at application level. However, they also lack support to analyze large size
logs from scientific workflows.

Several mechanisms have been proposed to find the causes of performance
bottlenecks. Chen et al. [12] proposed to use change point detection on the latency
of TCP request using conventional statistical mechanism, CUSUM and BCP. It
built a causal graph using pc-algorithm. Kim et al. [21] proposed to periodically



Title Suppressed Due to Excessive Length 5

generate service dependencies and rank root cause candidates using conditional
clustering. Killian et al. [20] proposed to find performance affecting changes (per-
machine differences) in logs. T-tests were used to compare the two distributions and
determine whether the observed differences of variances are significantly different.
Sambasivan et al. [30] proposed a mechanism to diagnose the causes of performance
changes in a distributed system by extending call path analysis to request flow
analysis. They claim that it can find performance affecting changes in flows by
comparing to the previous runtime traces. While these proposed mechanisms were
not designed to analyze large size of data, they can complement our work by
providing automation to identify data dependency of performance bottlenecks.

Yuan et al. [42] used signatures constructed from n-grams of system-call invoca-
tions observed during a problem occurrence. They used the Support Vector Machine
(SVM) [15] to detect whether a new signature is representative of a previously
observed problem. It builds a regression tree showing the low-level parameters
such as function parameters, configuration values, or client-sent parameters that
best separate requests in these categories. Oliner et al. [27] proposed to identify
correlations in anomalies across components. Their mechanism calculates anomaly
scores for discrete time-intervals by comparing the distribution of some counters
such as average latency. Attariyan et al. [4] proposed performance cost evaluation
using information flow analysis. Kundu et al. [22] presented performance modeling
of VM-hosted applications as resource allocation and contention using machine
learning mechanisms.

Several performance tools have been proposed to improve the performance
of HPC applications. Shende et al. [31] designed Tau to support monitoring
parallel applications by automatically inserting instrumentation routines. Böhme et
al. [7] presented an automatic mechanism which performs instrumentation during
compilation in order to identify the causes of waiting periods for MPI applications.
Burtscher et al. [10] designed Perfexpert to automate identifying the performance
bottlenecks of HPC applications with predefined rules. Adhianto et al. [3] designed
HPCToolkit to measure hardware events and to correlate the events with source
code to identify performance bottlenecks of parallel applications. The detection
mechanisms of these tools were heavily dependent on manually created metrics
and rules. Vampir [9] uses MPI workers to parallelize performance analysis com-
putations. However, it lacks supporting distributing the computations to multiple
nodes. These performance tools lack distributing and parallelizing the computations
of the analysis to large number of machines. Some tools such as Tau [31] and
Vampir [9] can parallelize computational loads MPI processes, and potentially
these MPI processes can be extended to distribute multiple loads. However, this
extension involves significant implementation challenges due to synchronization
and inter-process communication complexities and lack of fault tolerance support.
Instead, PATHA can interactively analyze the large size application and system logs
of scientific workflows requiring large computation within user-tolerable latency.
Furthermore, PATHA can complement these tools by providing mechanisms to
distribute and parallelize the computational loads in addition to fault tolerance
feature from read-only characteristics of RDDs.



6 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

Depending on job-specified resource requirements and the current system load,
the queuing system may assign one or multiple nodes to the job, and the system
captures performance information such as memory usage, CPU time, and elapsed
time. However, such information is generally about the whole job, and more fine-
grained information would be helpful to understand the individual steps of a large
parallel workflow. Alternatively, the workflow management system could record
the performance information of each step of a workflow [24], a profiler may be
used to automatically capture detailed performance information [31], or the user
may instrument selected operations with some library functions [34]. In these cases,
the performance data is typically captured into log files. Our tool leverages these
measuring mechanisms for the performance analysis.

1.3 Design and Implementation

PATHA is implemented over a big-data processing framework, Apache SparkTM [43]
that distributes and parallelizes computational workloads at the parser and the
analyzer levels. The PATHA supports:

• execution time analysis to find performance bottlenecks and time consuming
routines in applications

• data dependency analysis to identify the possible causes of performance bottle-
necks

• interactive visualization synched with performance measurements

Logs

Parser Application 
Log Parser

File System 
Log Parser

Job Log 
Parser

Application 
Logs

File System 
Logs

Job 
Logs

Analyzer Execution 
Time Analysis

Data dependency 
Analysis

Interactive 
Visualization

Distributed 
parallel 

Executions

Cluster Monitoring 
Log Parser

Cluster 
Monitoring Logs

...

...

...

RDDsRDDsRDDsRDDs

Fig. 1.1: The overview of PATHA.



Title Suppressed Due to Excessive Length 7

Using PATHA, performance analyses can be conducted on different types of logs
and measurements in scientific clusters in addition to application logs. As shown
in Fig. 1.1, each parser is implemented to parse different types of logs such as
application logs, file system logs, job logs, and cluster monitoring logs. At the
parser level, the different types of logs stored in parallel file system or database
can be loaded into distributed memory of the multiple nodes, as a form of Resilient
Distributed Datasets (RDDs). RDDs are the partitioned fault-tolerant (immutable)
collection of elements that can be operated in a distributed and parallel manner on
Apache SparkTM. The computations of RDDs for parsing and loading multiple files
or separate partitions in each file are distributed and computed in parallel in multiple
cores and multiple nodes. Then, these parsed results are loaded into memories in
multiple nodes or saved in multiple files. These loaded RDDs from the different
types of logs can be analyzed separately or together in PATHA. PATHA provides
the components of execution time analysis, data dependency performance analysis,
and interactive visualization framework. It provides the predefined set of functions
to enable users to conduct the performance analysis.

RDDs loaded as a form of rows of tuples can be computed in parallel by using
the functional programming operators such as map, reduce, ‘group by key’, or
‘and sort by key’. The executions are implemented by combining these functional
programming operators. In addition, computations between RDDs such as join
are supported so that different types of logs can be analyzed in a combined
way. This enables discovering uncovered performance issues that were difficult
to be identified when the logs are separately analyzed. Users can interactively
conduct performance analysis with either querying results or generating graphs by
combining with grouping, aggregation, and filtering operations with the interesting
fields or variables. This is to pinpoint the bottleneck locations from the execution
time analysis and to identify the most significant field related to the discovered
bottleneck from the data dependency analysis. In addition, it provides the platform
that users can use the existing libraries of machine learning and statistics in
popular programming languages, such as Java and Python, so that they can easily
conduct feature selection, clustering, classification, or regression analysis. Not only
conducting the PATHA-provided predefined performance analysis, but users also
can implement their customized analysis by combining libraries on the loaded
RDDs without consuming much time on the implementation of distributed and
parallel programming.

The computations at the analyzer level are distributed and computed in parallel
on multiple cores and multiple nodes similarly at the parser level. Apache SparkTM

can be deployed in a separate cluster with several hundred nodes so that users can
interactively execute analyses after connecting to the cluster. 1 While there is cost
of loading data from disk and distributing data into different nodes, the analysis can

1 The current version of Apache SparkTM is optimized when using local disk as an intermediate
data storage instead of accessing data from a parallel file system in scientific clusters. However,
the lack of local disk in scientific clusters did not impact much on performance. This was because
the most of the performance analyses in PATHA were compute bound as the most of the data
movement was happened in parsing and loading time.



8 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

be conducted on the loaded data from the memory. PATHA utilizes this memory
cache of data as much as possible so that the loading overhead can be minimized.
The crucial point is that underlying parallel execution of PATHA is dispatched
in multiple nodes and multiple cores in each node without the user intervention.
Therefore, PATHA can handle the large amount of different types of performance
logs and measurements.

Fig. 1.2: The interactive visualization framework.

The performance analyses in Sec. 1.4 and Sec. 1.5 were conducted using the
visualization tools and figure outputs of PATHA shown in Fig. 1.2. The interactive
framework is implemented with iPython and web browser, which allows users to
integrate performance analysis with the web browser front-end. As it uses web
browser as front-end, the requirement of installation is much reduced, users can
interactively conduct performance analysis by creating the different types of plots
with different time window or conditions. The computations on data as RDDs
behind this interactive analysis are distributed and executed in parallel. In addition,
users can conduct execution time analysis by querying different types of graphs such



Title Suppressed Due to Excessive Length 9

as histograms, bar graphs, box plots and scatter plots. This analysis framework not
only allows users to uncover performance bottlenecks in terms of execution time,
but also allows them to further query and to study the possible sources of additional
performance bottlenecks related to the data dependency. The case study of the
PTF application shows the steps and procedures to use PATHA, and we currently
work on to release PATHA as a software package along with the instructional
manual. We believe that these example of use cases can generally applicable to
other performance analyses for systems and applications. We plan to conduct user
studies to improve the user interface and to reduce the learning curve on using
PATHA. The development of this tool will continue to advance the future research
of characterizing performance behavior and building performance model.

1.4 Case Study - PTF Application

The evaluations of PATHA using the Apache SparkTM [43] were conducted on a
part of the NERSC Edison clusters with several hundred machines with two 8-core
CPUs, Intel R� Xeon R� E5-2670 and 64 GB memory. The Palomar Transient Factory
(PTF) application was used as a case study to evaluate PATHA. We have used the
PTF application logs collected on the NERSC Edison cluster system from Mar. 19,
2015 to Jul. 18, 2015 (PST). The PTF application was executed on the compute
nodes of the NERSC Edison cluster system assigned for regular applications with
two 12-core CPUs, Intel R� Xeon R� E5-2695 and 64 GB memory. 2 We used Apache
SparkTM to distribute and parallelize computational loads for PATHA. PATHA
allowed more thorough investigation on the PTF application measurements and
derived values from the measurements such as the average execution time by
averaging differences of the measured timestamps in multiple tasks in each job.
While we were able to select the number of machines up to several hundreds for our
experiments, the executions were not exclusive in the allocated machines. We plan
to set up exclusive executions on the allocated machines to analyze the scalability of
PATHA. Due to our effort to reduce the overhead of data loading and distribution,
our initial observations confirmed that PATHA was scalable in several hundred
machines without degradation even with the interferences from other job executions.

1.4.1 PTF Application

The PTF application focuses on expanding our knowledge of transient phenomena
such as supernova explosions and massive star eruptions [23]. There are four large-
scale photometric and spectroscopic surveys that generate and/or utilize hundreds
of gigabytes of data per day, and the PTF application is one of them. The transient

2 The Edison cluster system for PATHA has different configurations with that of the Edison cluster
system for the PTF.



10 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

detection survey component of the PTF has been performed at the automated
Palomar Samuel Oschin 48-inch Schmidt telescope equipped with a camera that
covers a sky area of 7.3 square degrees in a single snapshot. Data taken with
the camera are transferred to NERSC Edison where running a real-time reduction
pipeline. The pipeline matches images taken at different nights under different
observing conditions and performs image subtraction to search for transients.
The transient candidates out of this pipeline then pass through machine-learning
classifiers to be prioritized for real transients over artifacts. The final output is then
displayed through a web portal for visual inspection by human. This pipeline has
achieved the goal of identifying optical transients within minutes of images being
taken.

For the case study with the PTF application, we used its measurement logs that
were collected in the database. The size of entire database is 1.6 TB. Timestamps,
job id, task id, and checkpoint id were loaded into RDDs for execution time analysis.
The execution time at each checkpoint was computed for each job and task. Then,
the execution times were grouped by different keys, e.g., job or task, and the
average execution times were computed with the keys. For this grouping, RDDs
were needed to include columns with distinctive values to be used as keys such
as job id, task id, and checkpoint id. During computation for the average, missing
timestamps or unordered timestamps were filtered out. These irregularities were
caused by various reasons, e.g., failures in the executions at application level or
system level. To implement filtering out these using database query or customized
user application can be challenging and costly. For data dependency performance
analysis, the execution times were computed with multiple associated variables or
fields that were potentially related to the identified performance bottlenecks.

Fig. 1.3 depicts the average amount of time in seconds that the PTF analysis
pipeline took on each day to execute all jobs and tasks, which were executed from
May 18, 2015 to June 15, 2015. The execution of PTF application involves the
executions of multiple jobs computing different areas. Each job consists of 10 tasks
whose checkpoints are stored in database when each processing step is conducted.
As shown in Fig. 1.3(a), the PTF analysis pipeline consists of 38 checkpoints, with
each color representing a different checkpoint. The top five checkpoints with the
longest execution time taken over a span of 64 days were checkpoints 8, 25, 29,
31, and 36 in Fig. 1.3(a). The average daily percentage calculations revealed that
checkpoint 8 took on average 7.29%, checkpoint 25 takes 11.16%, checkpoint 29
takes 6.22%, checkpoint 31 takes 14.79%, and most notably, checkpoint 36 takes
23.72% on average. The three checkpoints with the longest average execution times
were further investigated for a potential bottleneck where performance could be
improved.



Title Suppressed Due to Excessive Length 11

(a) The average amount of time in seconds for jobs with checkpoints. Each color
represents one of the 38 checkpoints.

(b) The amount of time in seconds for jobs with checkpoint 36, where each vertical line
is for one day. The line in the middle of a box marks the median time, the brackets of a
box mark the interquartile ranges (IQRs), the high whisker is at Q3+1.5⇥ IQR, and the
circles mark the instances with extra long execution time.

Fig. 1.3: The average amount of time in seconds for checkpoint operations, which
was executed from May 18,2015 to June 15,2015.



12 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

1.4.2 Execution Time Analysis

Using PATHA, we conducted execution time analysis on checkpoint 36 specifically.
The Transients in the Local Universe (TILU) query - a geometric query that
correlates the incoming candidates with the table of known galaxies with their
elliptical shapes and orientations. Fig. 1.3(b) shows the box plot of average
execution time of this query together with the performance outliers as circles. We see
that many jobs took much longer than the average time. Based on this observation,
we focused on certain days, such as June 13, 2015 that has larger variance and many
outliers. Further study about this day will be presented next paragraphs.

Fig. 1.4(a) shows the scatter plot of the amount of time in seconds for each job
throughout the day starting at approximately 04:30, when the first task of checkpoint
25, 31, and 36 was executed on June 13, 2015. Fig. 1.4(b) shows the scatter plot for
checkpoint 36, which shows the spikes of an execution time during the time period
from 08:20 to 08:45 on June 13, 2015. This particular time window would need
further investigation.

Fig. 1.4(c) shows the time spent by each instance of TILU query in the time
window from 08:20 to 08:45. By focusing on the executions in this specific
time duration with significantly higher execution times, we can discern whether
bottlenecks are caused by cluster load competing system resources or caused by
application-specific reasons. The length of each bar in Fig. 1.4(c) shows the total
execution time of each job, and its corresponding job IDs for the checkpoint
operation 36. The jobs with longest execution time had job IDs 16339, 16340,
and 16342. Interestingly, the other job, 16353 that was executed in the similar
time window showed much smaller execution times. These instances of long
execution time were interspersed with normal looking instance showing much
smaller execution time. Therefore, we speculate that system loads due to competing
for shared resources did not cause their long execution times. Additional possibility
would be studied in the next section about whether these long execution times had
data dependencies in user data.

1.4.3 Data Dependency Performance Analysis

We studied two attributes in the PTF application to see how they affected the
execution time and how the performance of the PTF application depended on them,
based on the suggestions from application scientists. These attributes were: the
number of saved objects and the galactic latitude.

Analysis of Saved Objects

In the PTF application, a fragmentation algorithm is performed on the subtraction
images to identify variable stars and transient candidates over the noisy background



Title Suppressed Due to Excessive Length 13

(a) The average amount of checkpoint time for checkpoint 25, 31, and 36.

(b) The average amount of time for checkpoint 36.

(c) The execution times of all jobs with their corresponding job IDs during the time period 12:20
to 13:06 on June 13, 2015.

Fig. 1.4: The amount of time in seconds per day for each job on June 13, 2015.



14 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

(a) Saved Objects - Checkpoint 25 (b) Absolute Galactic Latitude - Checkpoint 25

(c) Saved Objects - Checkpoint 31 (d) Absolute Galactic Latitude - Checkpoint 31

(e) Saved Objects - Checkpoint 36 (f) Absolute Galactic Latitude - Checkpoint 36

Fig. 1.5: The average execution time of checkpoints 25, 31, and 36 for number of
saved objects and absolute galactic latitude.

and to measure their shape parameters such as the length and angle of its major axis
and ellipticity. Then, a simple shape cut is applied to remove elongated candidates
that are probably artifacts. The candidates that pass the shape cut are saved for
further examination, i.e., checkpoints after the checkpoint 25. The reason of having
different numbers of saved objects is that the total number of candidates for further
examination is determined by the number of variable stars (since real transients



Title Suppressed Due to Excessive Length 15

are rare), which in turn correlates with the total number of stars in a given field.
Fig. 1.5(a, c, e) show the average execution time of checkpoints 25, 31 and 36 for
the number of saved objects, and the linear relation between the average execution
time and the number of saved objects. 3 It shows the performance bottleneck in these
checkpoints when computed with the large number of stored objects. This is because
the large number of saved objects requires more comparisons and computation. This
identified bottleneck would lead to reduce the computation time when computing
with the large number of stored objects.

Analysis of Galactic Latitude

Fig. 1.5(b, d, f) illustrate a correlation between the execution times of three
checkpoints (25, 31, and 36) and the absolute galactic latitude (zero degree
corresponds to the Milky Way plane), and the performance bottlenecks is shown
at low galactic latitudes. The physical reason behind it is that the closer a field is
to the Milky Way, the more celestial objects, the more transient/variable candidates,
and the longer execution time for these checkpoints. At low galactic latitudes, i.e.,
close to the Milky Way plane, the stellar density is higher, and so is the density of
variable stars. Therefore, images taken at low galactic latitudes in general generate
more candidates than those at high galactic latitudes.

With the identified data dependencies, we optimized the application pipeline for
the checkpoint 31, where we parallelized the most time consuming routines when
computing the larger number of saved objects and at low absolute galactic latitudes.
The optimization showed the reduced execution time up to 2.05 times. We can
further improve overall performance of the checkpoint 31 by applying the parallel
executions more intelligently. Instead of making all executions in parallel including
small execution times, we can only make executions in parallel that supposedly take
much larger execution time with larger number of saved objects and at low absolute
galactic latitudes. For this purpose, we plan to analyze how to adjust parallelism
depending on the number of saved objects and absolute galactic latitudes.

1.5 Case Study - Job Log Analysis

1.5.1 Job Logs

Scientific clusters generally consist of a job scheduling engine, compute nodes
for assigned jobs, storage nodes for a parallel file system, data transfer nodes for
network accesses, and special purpose nodes for database or web services. Scientific
clusters contain sufficiently large number of nodes and multiple parallel executions

3 The linear regression coefficients are 5.673 ⇥ 10�3 for checkpoint 31 and 8.515 ⇥ 10�4 for
checkpoint 36.



16 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

from the tasks that incur complexity challenges for analysis from developers and
system administrators. Due to the complexity and the size of the job logs, it
is challenging for developers and system administrators to analyze and extract
meaningful information from the logs. For example, one can attempt to select jobs
with the top-most resource usage to analyze whether they experience performance
anomalies, and this task can be a challenge because of the large amount of job logs
and the concurrent data accesses on the shared resources.

1.5.2 Test Setup

In our experiments, we have used the job logs collected on the Genepool cluster
at NERSC, consisting of 774 nodes [1]. The logs were written by the Univa Grid
Engine [2] when each job was finished. The size of the logs from the Genepool
cluster from July 29, 2014 to Feb. 28, 2016 was 4.5 TB that can incur significant
computational challenges for an analysis. To generate plots in later sections, we
have used the part of the job logs from Jan. 1, 2015 to Jan. 31, 2015 (GMT) with 2.4
million records or 1.1 GB. It contains 45 fields such as host name, job name, failed
code, exit code, and resource usages. We selected 13 performance-related fields:
wall clock, user/system CPU time, soft/hard page faults, file block input/output,
voluntary/involuntary context switches, aggregated memory usage, aggregated I/O,
maximum resident set size, and maximum virtual memory. Tab. 1.1 describes these
fields.

Table 1.1: The description of performance-related fields.

Feature Description
Wall clock The duration between start and end of a task

User CPU time The sum of time spent on CPU cores at the user level
System CPU time The sum of time spent on CPU cores at the system level

CPU time The sum of the user CPU time and system CPU time
Maximum resident set size Maximum value of utilized memory size during job execution

Page reclaims Soft page faults without involving I/O
Page faults Hard page faults with involving I/O

Block input operations The number of times that the file system had to perform input
Block output operations The number of times that the file system had to perform output

Voluntary context switches The number of times for voluntary context switches
Involuntary context switches The number of times for involuntary context switches

Memory The integral memory usage in Gbytes ⇤ CPU time in seconds
IO The amount of data transferred in input/output operations



Title Suppressed Due to Excessive Length 17

1.5.3 Job Log Analysis

Scientific clusters have encountered technical advances that involve increasing
scales of data volumes, number of machines, and exploited parallelism in software
executions. This leads to unforeseen scales of interactions in software executions
between hardware components and nodes. Developers often encounter difficulties
to gather information about the details of underlying hardwares and runtime
information of a cluster containing large number of nodes. On the other hand,
system administrators are overwhelmed by large-scale performance-related logs and
noises from interactions and interferences in the executions of a cluster. Due to
these reasons, it is challenging to analyze system performance on scientific clusters.
For these challenges, PATHA provides big-data-ready performance analysis features
with much less developmental costs.

Fig. 1.6: The aggregated CPU time (s) from top 4 applications



18 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

Fig. 1.6 shows the aggregated CPU time(s) from top 4 frequently executed
applications on Genepool cluster at NERSC between Jan. 1, 2015 and Jan. 31, 2015
(GMT). The most frequently executed applications need to be selected. Then the
job executions from these selected top jobs (top 4 jobs in 1.6) need to be selected.
CPU times of each job execution also need to be aggregated as one job can have
multiple sub-job (task) executions. The aggregated CPU times can be plotted as
box plots, and application developers can analyze whether the executed jobs spend
unexpectedly large CPU time. In addition, the frequently executed top applications
can be analyzed for expected performance, and PATHA makes these analyses easier.

1.5.4 Clustering Analysis

Clustering analysis groups task executions represented as points of features sharing
similar performance characteristics. In our case, the features correspond to the
selected fields of the job logs. The points as the target of clustering correspond
to each record of the job logs representing a completed execution. The scales of the
features differ by multiple orders of magnitude as they show the different types of
fields of the job logs. The scale of each field is adjusted by L1-norm scaling of each
field.

We applied K-means clustering algorithm [17], which makes clusters with a
specified k as a number of clusters. Using clustering analysis, we can identify the
minor clusters containing small number of points, and these minor clusters have
different characteristics from other major clusters containing large number of points.
When the centroids of these minor clusters are separated from the centroid of the
major clusters with significant distances, this can mean that the minor clusters have
significantly different characteristics. Therefore, these minor clusters can be good
targets for further performance analysis where significantly different characteristics
are resulted from.

Table 1.2: The size of clustering results with different scalings and k: C

i

is the ith
cluster.

k C1 C2 C3 C4 C5 C6 C7 C8
2 79 2.40M
4 1 67 78 2.4M
8 1 1 22 78 78 115 1456 2.4M

Tab. 1.2 shows the size of clustering results with different k. For instance, in
Tab. 1.2 with L1-norm scaling, C1 (size 79) with k = 2 is divided into C1 (size 1) and
C3 (size 78) with k = 4. In addition, C1 and C3 with k = 4 are repeatedly identified
with the same size in C1 and C4 wit k = 8. We inspected these two clusters, and
discovered that they contain extraordinarily high values of integrated memory usage
above the theoretically possible value. We speculated that this was a system glitch



Title Suppressed Due to Excessive Length 19

and required further investigation of its causes. We believe that this example shows
the usage of the tool towards the identification of the performance outliers from the
clustering results.

Plotting results from the clustering algorithm help validate fitting results. As the
size of features is 13, it is not possible to directly plot on 2D or 3D space. To enable
plotting, we applied dimensionality reduction method, PCA [19]. Fig. 1.7 shows that
the PCA-transformed plot of clustering results for the original L1-norm scaled data
in Tab. 1.2. Each cluster is colored in a different color. The centers of the clusters
are represented with cross marks with the same color of the cluster. The points
in clusters are randomly selected in log-log scale of the size of the clusters. This
is to reduce the number of points that are most likely redundant in large clusters.
However, this selection may cause an underestimation of large clusters. In addition,
the sizes of cross marks of centers are increased in log-log scale to represent the
size of clusters. Fig. 1.7 shows the identified performance outliers. Fig. 1.7(a, b, c)
show significantly distant minor clusters near (0.1,0), (0.2,0), and (0.4,0). They were
the clusters, C1 (size 79) with k = 2 and C1 (size 1) and C3 (size 78) with k = 4 in
Tab. 1.2. 4

1.6 Conclusion

As the computations and analyses of large datasets are distributed and parallelized
on multiple compute-nodes, it becomes challenging to analyze the performance
issues related to the applications and hardware platforms due to the large collection
of performance measurements. In order to tackle this challenge, we have developed
PATHA (Performance Analysis Tool for HPC Applications) using an open-source
big data processing framework. The HPC applications as referred to here include
parallel applications, high-throughput computing applications, and other applica-
tions for Big Data processing.

Users can use PATHA to identify performance characteristics and performance
bottlenecks in their science applications and scientific clusters. PATHA can analyze
large volume of performance measurement data from large science projects. It
provides the execution time analysis to find performance bottlenecks and time-
consuming routines in applications, data dependency performance analysis to
identify possible data dependencies of discovered performance bottlenecks. These
analyses can be interactively conducted by using different types of performance
measurements from scientific clusters.

We have conducted two case studies to evaluate PATHA. With the PTF appli-
cation, we identified performance bottlenecks in checkpoint operations 25, 31, and
36. We also identified their direct data dependencies on the number of saved objects
and the absolute galactic latitude. Developers of the PTF application have been
working on optimizing identified performance bottlenecks, and the execution time

4 Please note that the points in Fig. 1.7(b) and Fig. 1.7(c) near (0,[-0.05, -0.25]) are not shown in
Fig. 1.7(a) as they are the part of the major cluster near (0,0).



20 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

(a) Original, L1-norm, k = 2

(b) Original, L1-norm, k = 4

(c) Original, L1-norm, k = 8

Fig. 1.7: PCA-transformed clustering results



Title Suppressed Due to Excessive Length 21

has been reduced up to 2.05 times. In the other case study with the job logs, we
have analyzed system performance in a large scientific cluster. We were also able to
identify system performance outliers using clustering analysis and dimensionality
reduction method.

For the future work, we plan to use the PATHA in the extended analysis
combining the measurements of hardware executions in scientific clusters and the
measurements from the applications. In addition, we plan to automate the process of
bottleneck identification. These will help identify the performance bottlenecks due
to the system related issues along with the application related issues.

1.7 Acknowledgments

This work was supported by the Office of Advanced Scientific Computing Research,
Office of Science, the U.S. Dept. of Energy, under Contract No. DE-AC02-
05CH11231. This work used resources of NERSC. The authors would like to thank
Douglas Jacobson, Jay Srinivasan, and Richard Gerber at NERSC, Bryce Foster and
Alex Copeland at JGI, and Arie Shoshani at LBNL.

References

1. Genepool cluster. http://www.nersc.gov/users/computational-systems/

genepool (2015)
2. Univa grid engine. http://www.univa.com/products/grid-engine.php

(2015)
3. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,

N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs. Concurr.
Comput. : Pract. Exper. 22(6), 685–701 (2010)

4. Attariyan, M., Chow, M., Flinn, J.: X-ray: Automating Root-Cause Diagnosis of Performance
Anomalies in Production Software. In: OSDI ’12: Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation, pp. 307–320 (2012)

5. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extraction and
workload modelling. In: OSDI’04: Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, pp. 259–272. USENIX (2004)

6. Bod, P., Berkeley, U.C., Goldszmidt, M., Fox, A., Berkeley, U.C., Woodard, D.B., Andersen,
H., Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting the
datacenter. In: EuroSys’10: Proceedings of the 5th European conference on Computer
systems, pp. 111–124. ACM, New York, New York, USA (2010). DOI 10.1145/1755913.
1755926

7. Bohme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the Root Causes of Wait States in
Large-Scale Parallel Applications. In: Proceedings of the 2010 39th International Conference
on Parallel Processing, pp. 90–100. IEEE (2010)

8. Browne, J.C., DeLeon, R.L., Lu, C.D., Jones, M.D., Gallo, S.M., Ghadersohi, A., Patra, A.K.,
Barth, W.L., Hammond, J., Furlani, T.R., McLay, R.T.: Enabling comprehensive data-driven
system management for large computational facilities. In: High Performance Computing,
Networking, Storage and Analysis (SC), 2013 International Conference for, pp. 1–11. DOI
10.1145/2503210.2503230



22 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

9. Brunst, H., Winkler, M., Nagel, W.E., Hoppe, H.C.: Performance optimization for large scale
computing: The scalable vampir approach. In: Computational Science-ICCS 2001, pp. 751–
760. Springer (2001)

10. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: PerfExpert:
An Easy-to-Use Performance Diagnosis Tool for HPC Applications. In: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–11 (2010)

11. Cao, J., Kerbyson, D., Papaefstathiou, E., Nudd, G.R.: Performance modeling of parallel
and distributed computing using pace. In: Performance, Computing, and Communications
Conference, 2000. IPCCC ’00. Conference Proceeding of the IEEE International, pp. 485–
492 (2000). DOI 10.1109/PCCC.2000.830354

12. Chen, P., Qi, Y., Zheng, P., Hou, D.: CauseInfer: Automatic and distributed performance
diagnosis with hierarchical causality graph in large distributed systems. In: INFOCOM’14:
Proceedings IEEE International Conference of Computer Communications, pp. 1887–1895.
IEEE (2014). DOI 10.1109/INFOCOM.2014.6848128

13. Chuah, E., Jhumka, A., Narasimhamurthy, S., Hammond, J., Browne, J.C., Barth, B.: Linking
resource usage anomalies with system failures from cluster log data. In: 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems (SRDS), pp. 111–120. DOI 10.
1109/SRDS.2013.20

14. Cohen, I., Chase, J.S., Goldszmidt, M., Kelly, T., Symons, J.: Correlating Instrumentation Data
to System States: A Building Block for Automated Diagnosis and Control. In: OSDI, vol. 6,
pp. 231–244. USENIX (2004)

15. Cortes, C., Vapnik, V.: Support-vector networks. Mach Learn 20(3), 273–297 (1995). DOI
10.1007/BF00994018

16. Duan, R., Nadeem, F., Wang, J., Zhang, Y., Prodan, R., Fahringer, T.: A hybrid intelligent
method for performance modeling and prediction of workflow activities in grids. In:
Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and
the Grid, CCGRID ’09, pp. 339–347. IEEE Computer Society, Washington, DC, USA (2009).
DOI 10.1109/CCGRID.2009.58

17. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means Clustering Algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100–108 (1979). DOI
10.2307/2346830

18. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft (2009)

19. Jolliffe, I.: Principal Component Analysis. In: Wiley StatsRef: Statistics Reference Online.
John Wiley & Sons, Ltd (2014)

20. Killian, C., Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems
logs to diagnose performance problems. In: NSDI’12: Proceedings of the 9th USENIX
conference on Networked systems design and implementation. USENIX (2012)

21. Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented architecture. ACM
SIGMETRICS Performance Evaluation Review 41(1), 93–104 (2013). DOI 10.1145/2465529.
2465753

22. Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., Dutta, K.: Modeling virtualized applications
using machine learning techniques. ACM Sigplan Notices 47(7), 3–14 (2012)

23. Law, N.M., Kulkarni, S.R., Dekany, R.G., Ofek, E.O., Quimby, R.M., Nugent, P.E., Surace,
J., Grillmair, C.C., Bloom, J.S., Kasliwal, M.M., Bildsten, L., Brown, T., Cenko, S.B., Ciardi,
D., Croner, E., Djorgovski, S.G., Eyken, J.v., Filippenko, A.V., Fox, D.B., Gal-Yam, A., Hale,
D., Hamam, N., Helou, G., Henning, J., Howell, D.A., Jacobsen, J., Laher, R., Mattingly, S.,
McKenna, D., Pickles, A., Poznanski, D., Rahmer, G., Rau, A., Rosing, W., Shara, M., Smith,
R., Starr, D., Sullivan, M., Velur, V., Walters, R., Zolkower, J.: The palomar transient factory:
System overview, performance, and first results. Publications of the Astronomical Society of
the Pacific 121(886), pp. 1395–1408 (2009)

24. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M.B., Lee, E.A., Tao,
J., Zhao, Y.: Scientific workflow management and the kepler system. Concurrency and
Computation: Practice and Experience 18(10), 1039–1065 (2006)



Title Suppressed Due to Excessive Length 23

25. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Cost- and deadline-constrained provi-
sioning for scientific workflow ensembles in iaas clouds. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12, pp.
22:1–22:11. IEEE Computer Society Press, Los Alamitos, CA, USA (2012)

26. Matsunaga, A., Fortes, J.A.B.: On the use of machine learning to predict the time and resources
consumed by applications. In: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pp. 495–504. IEEE
Computer Society, Washington, DC, USA (2010). DOI 10.1109/CCGRID.2010.98

27. Oliner, A.J., Kulkarni, A.V., Aiken, A.: Using correlated surprise to infer shared influence.
In: DSN’10: IEEE/IFIP International Conference on Dependable Systems & Networks, pp.
191–200. IEEE (2010). DOI 10.1109/DSN.2010.5544921

28. Pan, X., Tan, J., Kavulya, S., Gandhi, R., Narasimhan, P.: Ganesha: blackBox diagnosis of
MapReduce systems. ACM SIGMETRICS Performance Evaluation Review 37(3), 8–13
(2009). DOI 10.1145/1710115.1710118

29. Rusu, F., Nugent, P., Wu, K.: Implementing the palomar transient factory real-time detection
pipeline in GLADE: Results and observations. In: Databases in Networked Information
Systems, Lecture Notes in Computer Science, vol. 8381, pp. 53–66 (2014)

30. Sambasivan, R.R., Zheng, A.X., Rosa, M.D., Krevat, E., Whitman, S., Stroucken, M., Wang,
W., Xu, L., Ganger, G.R., De Rosa, M., Krevat, E., Whitman, S., Stroucken, M., Wang, W.,
Xu, L., Ganger, G.R.: Diagnosing performance changes by comparing request flows. In:
NSDI’11: Proceedings of the 8th USENIX conference on Networked systems design and
implementation. USENIX (2011)

31. Shende, S.S., Malony, A.D.: The TAU parallel performance system. International Journal of
High Performance Computing Applications 20(2), 287–311 (2006)

32. Shoshani, A., Rotem, D. (eds.): Scientific Data Management: Challenges, Technology, and
Deployment. Chapman & Hall/CRC Press (2010)

33. Thereska, E., Ganger, G.R.: Ironmodel: robust performance models in the wild. ACM
SIGMETRICS Performance Evaluation Review 36(1), 253–264 (2008). DOI 10.1145/
1375457.1375486

34. Tierney, B., Johnston, W., Crowley, B., Hoo, G., Brooks, C., Gunter, D.: The netlogger
methodology for high performance distributed systems performance analysis. In: High Per-
formance Distributed Computing, 1998. Proceedings. The Seventh International Symposium
on, pp. 260–267 (1998). DOI 10.1109/HPDC.1998.709980

35. Tikir, M., Carrington, L., Strohmaier, E., Snavely, A.: A genetic algorithms approach to
modeling the performance of memory-bound computations. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, p. 47. ACM (2007)

36. Vento, D.D., Hart, D.L., Engel, T., Kelly, R., Valent, R., Ghosh, S.S., Liu, S.: System-
level monitoring of floating-point performance to improve effective system utilization. In:
High Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for, pp. 1–6

37. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance model
for multicore architectures. Commun. ACM 52(4), 65–76 (2009). DOI 10.1145/1498765.
1498785

38. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system problems
by mining console logs. In: SOSP’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 117–131. ACM (2009). DOI 10.1145/1629575.1629587

39. Yadwadkar, N.J., Ananthanarayanan, G., Katz, R.: Wrangler: Predictable and Faster Jobs
Using Fewer Resources. In: Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pp. 26:1–26:14. ACM, New York, NY, USA (2014). DOI 10.1145/2670979.
2671005. URL http://doi.acm.org/10.1145/2670979.2671005

40. Yoo, W., Koo, M., Cao, Y., Sim, A., Nugent, P., Wu, K.: Patha: Performance analysis tool
for hpc applications. In: IPCCC’15: Proceedings of the 34st IEEE International Performance
Computing and Communications Conference (2015)

41. Yoo, W., Larson, K., Baugh, L., Kim, S., Campbell, R.H.: ADP: automated diagnosis
of performance pathologies using hardware events. In: Proceedings of the 12th ACM



24 Wucherl Yoo1, Michelle Koo2, Yi Cao3, Alex Sim1, Peter Nugent1,2, Kesheng Wu1

SIGMETRICS/PERFORMANCE, vol. 40, pp. 283–294. ACM, New York, New York, USA
(2012). DOI 10.1145/2254756.2254791

42. Yuan, C., Lao, N., Wen, J.R., Li, J., Zhang, Z., Wang, Y.M., Ma, W.Y.: Automated
known problem diagnosis with event traces. In: EuroSys’06: Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems, vol. 40, pp. 375–388. ACM
(2006). DOI 10.1145/1218063.1217972

43. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster Computing
with Working Sets. In: Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10. USENIX (2010)


